Using Differentials to Study Population Dynamics

We have seen that differentials give a convenient way for expressing linear approximations. In
this example, we explore population dynamics in the language of differentials.

A simple generational model of population dynamics says that an initial population x will yield
a next generation with population given by a function P(x). The next generation after that is
given by “iterating” the function P, that is, P(P(x)). We can keep applying P to the result to
find the population of successive generations. Note in particular that population will be stable over
generations at any x such that P(z) = z. Such an x is known as a “fixed point.”

We say that a fixed point zq is “attracting” if, given an initial population value g + Az with
Az sufficiently small, the successive generations have size closer and closer to xg. More formally,
the sequence of values

2o + Az, P(zo + Az), P(P(z0 + Ax)), P(P(P(x0 + Az))), ...

gets closer and closer to xg.

Question:

e Show that if x¢ is a fixed point of P(z) and |P'(zo)| < 1, then ¢ is attracting.

e Given fixed positive constants a,b with ab > 1, find the fixed points of P(z) = ax(b— x) and
determine if they are attracting.
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