
Using Di�erentials to Study Population Dynamics 

We have seen that di�erentials give a convenient way for expressing linear approximations. In 
this example, we explore population dynamics in the language of di�erentials. 

A simple generational model of population dynamics says that an initial population x will yield 
a next generation with population given by a function P (x). The next generation after that is 
given by “iterating” the function P , that is, P (P (x)). We can keep applying P to the result to 
find the population of successive generations. Note in particular that population will be stable over 
generations at any x such that P (x) = x. Such an x is known as a “fixed point.” 

We say that a fixed point x0 is “attracting” if, given an initial population value x0 + ”x with 
”x su�ciently small, the successive generations have size closer and closer to x0. More formally, 
the sequence of values 

x0 + ”x, P (x0 + ”x), P (P (x0 + ”x)), P (P (P (x0 + ”x))), . . . 

gets closer and closer to x0. 

Question: 

• Show that if x0 is a fixed point of P (x) and |P �(x0)| < 1, then x0 is attracting. 

• Given fixed positive constants a, b with ab > 1, find the fixed points of P (x) = ax(b � x) and 
determine if they are attracting. 
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